in tensorflow_script_mode_local_training_and_serving/tensorflow_script_mode_local_training_and_serving.py [0:0]
def get_config(mode):
assert mode is CLOUD_MODE or mode is LOCAL_MODE, f'unknown mode selected: {mode}'
if mode == CLOUD_MODE:
## REPLACE WITH A VALID IAM ROLE - START ##
role = DUMMY_IAM_ROLE
## REPLACE WITH A VALID IAM ROLE - END ##
assert role is not DUMMY_IAM_ROLE, "For cloud mode set a valid sagemaker iam role"
print('Will run training on an ML instance in AWS.')
session = sagemaker.Session()
bucket = session.default_bucket()
s3_data_prefix = 'tensorflow_script_mode_cloud_training/mnist/'
instance_type = 'ml.m5.large'
training_dataset_path = 's3://' + bucket + '/' + s3_data_prefix
else: # mode == LOCAL_MODE
print('Will run training locally in a container image.')
session = LocalSession()
session.config = {'local': {'local_code': True}}
instance_type = 'local'
training_dataset_path = "file://./data/"
role = DUMMY_IAM_ROLE # not needed in local training
s3_data_prefix = None # not needed in local training
bucket = None # not needed in local training
config = {
'mode': mode,
's3_data_prefix': s3_data_prefix,
'sagemaker_session': session,
'bucket': bucket,
'instance_type': instance_type,
'training_dataset_path': training_dataset_path,
'role': role}
return config