in tensorflow_script_mode_local_training_and_serving/tensorflow_script_mode_local_training_and_serving.py [0:0]
def download_training_and_eval_data():
if os.path.isfile('./data/train_data.npy') and \
os.path.isfile('./data/train_labels.npy') and \
os.path.isfile('./data/eval_data.npy') and \
os.path.isfile('./data/eval_labels.npy'):
print('Training and evaluation datasets exist. Skipping Download')
else:
print('Downloading training and evaluation dataset')
s3 = boto3.resource('s3')
for filename in data_files_list:
s3.meta.client.download_file('sagemaker-sample-data-us-east-1', 'tensorflow/mnist/' + filename,
'./data/' + filename)