in tensorflow_script_mode_local_gpu_training_resnet50/tensorflow_script_mode_local_training_resnet50.py [0:0]
def download_training_and_eval_data():
if os.path.isfile('./data/training/train_data.npy') and \
os.path.isfile('./data/training/train_labels.npy') and \
os.path.isfile('./data/validation/validation_data.npy') and \
os.path.isfile('./data/validation/validation_labels.npy'):
print('Training and evaluation datasets exist. Skipping Download')
else:
print('Downloading training and evaluation dataset')
(X_train, y_train), (X_valid, y_valid) = cifar10.load_data()
with open('./data/training/train_data.npy', 'wb') as f:
np.save(f, X_train)
with open('./data/training/train_labels.npy', 'wb') as f:
np.save(f, y_train)
with open('./data/validation/validation_data.npy', 'wb') as f:
np.save(f, X_valid)
with open('./data/validation/validation_labels.npy', 'wb') as f:
np.save(f, y_valid)
print('Downloading completed')