container-batch-inference/resources/FairMOT/opts.py [9:91]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class opts(object):
  def __init__(self):
    self.parser = argparse.ArgumentParser()
    # basic experiment setting
    self.parser.add_argument('task', default='mot', help='mot')
    self.parser.add_argument('--dataset', default='jde', help='jde')
    self.parser.add_argument('--exp_id', default='default')
    self.parser.add_argument('--test', action='store_true')
    #self.parser.add_argument('--load_model', default='../models/ctdet_coco_dla_2x.pth',
                             #help='path to pretrained model')
    self.parser.add_argument('--load_model', default='',
                             help='path to pretrained model')
    self.parser.add_argument('--resume', action='store_true',
                             help='resume an experiment. '
                                  'Reloaded the optimizer parameter and '
                                  'set load_model to model_last.pth '
                                  'in the exp dir if load_model is empty.') 

    # system
    self.parser.add_argument('--gpus', default='0',
                             help='-1 for CPU, use comma for multiple gpus')
    self.parser.add_argument('--num_workers', type=int, default=8,
                             help='dataloader threads. 0 for single-thread.')
    self.parser.add_argument('--not_cuda_benchmark', action='store_true',
                             help='disable when the input size is not fixed.')
    self.parser.add_argument('--seed', type=int, default=317, 
                             help='random seed') # from CornerNet

    # log
    self.parser.add_argument('--print_iter', type=int, default=0, 
                             help='disable progress bar and print to screen.')
    self.parser.add_argument('--hide_data_time', action='store_true',
                             help='not display time during training.')
    self.parser.add_argument('--save_all', action='store_true',
                             help='save model to disk every 5 epochs.')
    self.parser.add_argument('--metric', default='loss', 
                             help='main metric to save best model')
    self.parser.add_argument('--vis_thresh', type=float, default=0.5,
                             help='visualization threshold.')
    self.parser.add_argument('--save_dir', type=str, default='/opt/ml/model', help='directory model saved')
    self.parser.add_argument('--checkpoint_format', type=str, default='/opt/ml/model/model-{epoch}.pth',
                             help='checkpoint file format')
    
    # model
    self.parser.add_argument('--arch', default='dla_34', 
                             help='model architecture. Currently tested'
                                  'resdcn_34 | resdcn_50 | resfpndcn_34 |'
                                  'dla_34 | hrnet_18')
    self.parser.add_argument('--head_conv', type=int, default=-1,
                             help='conv layer channels for output head'
                                  '0 for no conv layer'
                                  '-1 for default setting: '
                                  '256 for resnets and 256 for dla.')
    self.parser.add_argument('--down_ratio', type=int, default=4,
                             help='output stride. Currently only supports 4.')

    # input
    self.parser.add_argument('--input_res', type=int, default=-1, 
                             help='input height and width. -1 for default from '
                             'dataset. Will be overriden by input_h | input_w')
    self.parser.add_argument('--input_h', type=int, default=-1, 
                             help='input height. -1 for default from dataset.')
    self.parser.add_argument('--input_w', type=int, default=-1, 
                             help='input width. -1 for default from dataset.')
    
    # train
    self.parser.add_argument('--lr', type=float, default=1e-4,
                             help='learning rate for batch size 12.')
    self.parser.add_argument('--lr_step', type=str, default='20',
                             help='drop learning rate by 10.')
    self.parser.add_argument('--num_epochs', type=int, default=30,
                             help='total training epochs.')
    self.parser.add_argument('--batch_size', type=int, default=12,
                             help='batch size')
    self.parser.add_argument('--master_batch_size', type=int, default=-1,
                             help='batch size on the master gpu.')
    self.parser.add_argument('--num_iters', type=int, default=-1,
                             help='default: #samples / batch_size.')
    self.parser.add_argument('--val_intervals', type=int, default=1,
                             help='number of epochs to run validation.')
    self.parser.add_argument('--trainval', action='store_true',
                             help='include validation in training and '
                                  'test on test set')
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



container-dp/resources/FairMOT/opts.py [9:89]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class opts(object):
  def __init__(self):
    self.parser = argparse.ArgumentParser()
    # basic experiment setting
    self.parser.add_argument('task', default='mot', help='mot')
    self.parser.add_argument('--dataset', default='jde', help='jde')
    self.parser.add_argument('--exp_id', default='default')
    self.parser.add_argument('--test', action='store_true')
    self.parser.add_argument('--load_model', default='',
                             help='path to pretrained model')
    self.parser.add_argument('--resume', action='store_true',
                             help='resume an experiment. '
                                  'Reloaded the optimizer parameter and '
                                  'set load_model to model_last.pth '
                                  'in the exp dir if load_model is empty.') 

    # system
    self.parser.add_argument('--gpus', default='0',
                             help='-1 for CPU, use comma for multiple gpus')
    self.parser.add_argument('--num_workers', type=int, default=8,
                             help='dataloader threads. 0 for single-thread.')
    self.parser.add_argument('--not_cuda_benchmark', action='store_true',
                             help='disable when the input size is not fixed.')
    self.parser.add_argument('--seed', type=int, default=317, 
                             help='random seed') # from CornerNet

    # log
    self.parser.add_argument('--print_iter', type=int, default=0, 
                             help='disable progress bar and print to screen.')
    self.parser.add_argument('--hide_data_time', action='store_true',
                             help='not display time during training.')
    self.parser.add_argument('--save_all', action='store_true',
                             help='save model to disk every 5 epochs.')
    self.parser.add_argument('--metric', default='loss', 
                             help='main metric to save best model')
    self.parser.add_argument('--vis_thresh', type=float, default=0.5,
                             help='visualization threshold.')
    self.parser.add_argument('--save_dir', type=str, default='/opt/ml/model', help='directory model saved')
    self.parser.add_argument('--checkpoint_format', type=str, default='/opt/ml/model/model-{epoch}.pth',
                             help='checkpoint file format')
    
    # model
    self.parser.add_argument('--arch', default='dla_34', 
                             help='model architecture. Currently tested'
                                  'resdcn_34 | resdcn_50 | resfpndcn_34 |'
                                  'dla_34 | hrnet_18')
    self.parser.add_argument('--head_conv', type=int, default=-1,
                             help='conv layer channels for output head'
                                  '0 for no conv layer'
                                  '-1 for default setting: '
                                  '256 for resnets and 256 for dla.')
    self.parser.add_argument('--down_ratio', type=int, default=4,
                             help='output stride. Currently only supports 4.')

    # input
    self.parser.add_argument('--input_res', type=int, default=-1, 
                             help='input height and width. -1 for default from '
                             'dataset. Will be overriden by input_h | input_w')
    self.parser.add_argument('--input_h', type=int, default=-1, 
                             help='input height. -1 for default from dataset.')
    self.parser.add_argument('--input_w', type=int, default=-1, 
                             help='input width. -1 for default from dataset.')
    
    # train
    self.parser.add_argument('--lr', type=float, default=1e-4,
                             help='learning rate for batch size 12.')
    self.parser.add_argument('--lr_step', type=str, default='20',
                             help='drop learning rate by 10.')
    self.parser.add_argument('--num_epochs', type=int, default=30,
                             help='total training epochs.')
    self.parser.add_argument('--batch_size', type=int, default=12,
                             help='batch size')
    self.parser.add_argument('--master_batch_size', type=int, default=-1,
                             help='batch size on the master gpu.')
    self.parser.add_argument('--num_iters', type=int, default=-1,
                             help='default: #samples / batch_size.')
    self.parser.add_argument('--val_intervals', type=int, default=1,
                             help='number of epochs to run validation.')
    self.parser.add_argument('--trainval', action='store_true',
                             help='include validation in training and '
                                  'test on test set')
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



