def __getitem__()

in container-dp/resources/FairMOT/jde.py [0:0]


    def __getitem__(self, files_index):

        for i, c in enumerate(self.cds):
            if files_index >= c:
                ds = list(self.label_files.keys())[i]
                start_index = c

        img_path = self.img_files[ds][files_index - start_index]
        label_path = self.label_files[ds][files_index - start_index]

        imgs, labels, img_path, (input_h, input_w) = self.get_data(img_path, label_path)
        for i, _ in enumerate(labels):
            if labels[i, 1] > -1:
                labels[i, 1] += self.tid_start_index[ds]

        output_h = imgs.shape[1] // self.opt.down_ratio
        output_w = imgs.shape[2] // self.opt.down_ratio
        num_classes = self.num_classes
        num_objs = labels.shape[0]
        hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32)
        if self.opt.ltrb:
            wh = np.zeros((self.max_objs, 4), dtype=np.float32)
        else:
            wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs, ), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs, ), dtype=np.uint8)
        ids = np.zeros((self.max_objs, ), dtype=np.int64)
        bbox_xys = np.zeros((self.max_objs, 4), dtype=np.float32)

        draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else draw_umich_gaussian
        for k in range(num_objs):
            label = labels[k]
            bbox = label[2:]
            cls_id = int(label[0])
            bbox[[0, 2]] = bbox[[0, 2]] * output_w
            bbox[[1, 3]] = bbox[[1, 3]] * output_h
            bbox_amodal = copy.deepcopy(bbox)
            bbox_amodal[0] = bbox_amodal[0] - bbox_amodal[2] / 2.
            bbox_amodal[1] = bbox_amodal[1] - bbox_amodal[3] / 2.
            bbox_amodal[2] = bbox_amodal[0] + bbox_amodal[2]
            bbox_amodal[3] = bbox_amodal[1] + bbox_amodal[3]
            bbox[0] = np.clip(bbox[0], 0, output_w - 1)
            bbox[1] = np.clip(bbox[1], 0, output_h - 1)
            h = bbox[3]
            w = bbox[2]

            bbox_xy = copy.deepcopy(bbox)
            bbox_xy[0] = bbox_xy[0] - bbox_xy[2] / 2
            bbox_xy[1] = bbox_xy[1] - bbox_xy[3] / 2
            bbox_xy[2] = bbox_xy[0] + bbox_xy[2]
            bbox_xy[3] = bbox_xy[1] + bbox_xy[3]

            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = max(0, int(radius))
                radius = 6 if self.opt.mse_loss else radius
                #radius = max(1, int(radius)) if self.opt.mse_loss else radius
                ct = np.array(
                    [bbox[0], bbox[1]], dtype=np.float32)
                ct_int = ct.astype(np.int32)
                draw_gaussian(hm[cls_id], ct_int, radius)
                if self.opt.ltrb:
                    wh[k] = ct[0] - bbox_amodal[0], ct[1] - bbox_amodal[1], \
                            bbox_amodal[2] - ct[0], bbox_amodal[3] - ct[1]
                else:
                    wh[k] = 1. * w, 1. * h
                ind[k] = ct_int[1] * output_w + ct_int[0]
                reg[k] = ct - ct_int
                reg_mask[k] = 1
                ids[k] = label[1]
                bbox_xys[k] = bbox_xy

        ret = {'input': imgs, 'hm': hm, 'reg_mask': reg_mask, 'ind': ind, 'wh': wh, 'reg': reg, 'ids': ids, 'bbox': bbox_xys}
        return ret