in container-serving/resources/FairMOT/config.py [0:0]
def parse(self, args=''):
#self.gpus='0'
self.gpus_str = self.gpus
self.gpus = [int(gpu) for gpu in self.gpus.split(',')]
self.gpus = [i for i in range(len(self.gpus))] if self.gpus[0] >=0 else [-1]
self.lr_step = [int(i) for i in self.lr_step.split(',')]
self.fix_res = not self.keep_res
print('Fix size testing.' if self.fix_res else 'Keep resolution testing.')
self.reg_offset = not self.not_reg_offset
if self.head_conv == -1: # init default head_conv
self.head_conv = 256 if 'dla' in self.arch else 256
self.pad = 31
self.num_stacks = 1
if self.trainval:
self.val_intervals = 100000000
if self.master_batch_size == -1:
self.master_batch_size = self.batch_size // len(self.gpus)
rest_batch_size = (self.batch_size - self.master_batch_size)
self.chunk_sizes = [self.master_batch_size]
for i in range(len(self.gpus) - 1):
slave_chunk_size = rest_batch_size // (len(self.gpus) - 1)
if i < rest_batch_size % (len(self.gpus) - 1):
slave_chunk_size += 1
self.chunk_sizes.append(slave_chunk_size)
print('training chunk_sizes:', self.chunk_sizes)
self.root_dir = os.path.join(os.path.dirname(__file__), '..', '..')
self.exp_dir = os.path.join(self.root_dir, 'exp', self.task)
self.save_dir = os.path.join(self.exp_dir, self.exp_id)
self.debug_dir = os.path.join(self.save_dir, 'debug')
print('The output will be saved to ', self.save_dir)
if self.resume and self.load_model == '':
model_path = self.save_dir[:-4] if self.save_dir.endswith('TEST') \
else self.save_dir
self.load_model = os.path.join(model_path, 'model_last.pth')