in container-dp/resources/FairMOT/track.py [0:0]
def eval_seq(opt, dataloader, data_type, result_filename, save_dir=None, show_image=True, frame_rate=30, use_cuda=True):
if save_dir:
mkdir_if_missing(save_dir)
tracker = JDETracker(opt, frame_rate=frame_rate)
timer = Timer()
results = []
frame_id = 0
#for path, img, img0 in dataloader:
for i, (path, img, img0) in enumerate(dataloader):
#if i % 8 != 0:
#continue
if frame_id % 20 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
# run tracking
timer.tic()
if use_cuda:
blob = torch.from_numpy(img).cuda().unsqueeze(0)
else:
blob = torch.from_numpy(img).unsqueeze(0)
online_targets = tracker.update(blob, img0)
online_tlwhs = []
online_ids = []
#online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > opt.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
#online_scores.append(t.score)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_ids))
#results.append((frame_id + 1, online_tlwhs, online_ids, online_scores))
if show_image or save_dir is not None:
online_im = vis.plot_tracking(img0, online_tlwhs, online_ids, frame_id=frame_id,
fps=1. / timer.average_time)
if show_image:
cv2.imshow('online_im', online_im)
if save_dir is not None:
cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im)
frame_id += 1
# save results
write_results(result_filename, results, data_type)
#write_results_score(result_filename, results, data_type)
return frame_id, timer.average_time, timer.calls