in code/inference.py [0:0]
def predict_fn(input_data, model):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
input_id, input_mask = input_data
logger.info(input_id, input_mask)
input_id = input_id.to(device)
input_mask = input_mask.to(device)
with torch.no_grad():
output = model(input_id, input_mask)
_, prediction = torch.max(output, dim=1)
return prediction