tf-2-workflow/train_model/train.py [8:50]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 


def parse_args():
    
    parser = argparse.ArgumentParser()

    # hyperparameters sent by the client are passed as command-line arguments to the script
    parser.add_argument('--epochs', type=int, default=1)
    parser.add_argument('--batch_size', type=int, default=64)
    parser.add_argument('--learning_rate', type=float, default=0.1)
    
    # data directories
    parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAIN'))
    parser.add_argument('--test', type=str, default=os.environ.get('SM_CHANNEL_TEST'))
    
    # model directory: we will use the default set by SageMaker, /opt/ml/model
    parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR'))
    
    return parser.parse_known_args()


def get_train_data(train_dir):
    
    x_train = np.load(os.path.join(train_dir, 'x_train.npy'))
    y_train = np.load(os.path.join(train_dir, 'y_train.npy'))
    print('x train', x_train.shape,'y train', y_train.shape)

    return x_train, y_train


def get_test_data(test_dir):
    
    x_test = np.load(os.path.join(test_dir, 'x_test.npy'))
    y_test = np.load(os.path.join(test_dir, 'y_test.npy'))
    print('x test', x_test.shape,'y test', y_test.shape)

    return x_test, y_test
   

if __name__ == "__main__":
        
    args, _ = parse_args()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



tf-eager-script-mode/train_model/train.py [13:55]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 


def parse_args():
    
    parser = argparse.ArgumentParser()

    # hyperparameters sent by the client are passed as command-line arguments to the script
    parser.add_argument('--epochs', type=int, default=1)
    parser.add_argument('--batch_size', type=int, default=64)
    parser.add_argument('--learning_rate', type=float, default=0.1)
    
    # data directories
    parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAIN'))
    parser.add_argument('--test', type=str, default=os.environ.get('SM_CHANNEL_TEST'))
    
    # model directory: we will use the default set by SageMaker, /opt/ml/model
    parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR'))
    
    return parser.parse_known_args()


def get_train_data(train_dir):
    
    x_train = np.load(os.path.join(train_dir, 'x_train.npy'))
    y_train = np.load(os.path.join(train_dir, 'y_train.npy'))
    print('x train', x_train.shape,'y train', y_train.shape)

    return x_train, y_train


def get_test_data(test_dir):
    
    x_test = np.load(os.path.join(test_dir, 'x_test.npy'))
    y_test = np.load(os.path.join(test_dir, 'y_test.npy'))
    print('x test', x_test.shape,'y test', y_test.shape)

    return x_test, y_test
   

if __name__ == "__main__":
        
    args, _ = parse_args()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



