in tf-sentiment-script-mode/sentiment.py [0:0]
def get_model(learning_rate):
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
embedding_layer = tf.keras.layers.Embedding(max_features,
embedding_dims,
input_length=maxlen)
sequence_input = tf.keras.Input(shape=(maxlen,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
x = tf.keras.layers.Dropout(0.2)(embedded_sequences)
x = tf.keras.layers.Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)(x)
x = tf.keras.layers.MaxPooling1D()(x)
x = tf.keras.layers.GlobalMaxPooling1D()(x)
x = tf.keras.layers.Dense(hidden_dims, activation='relu')(x)
x = tf.keras.layers.Dropout(0.2)(x)
preds = tf.keras.layers.Dense(1, activation='sigmoid')(x)
model = tf.keras.Model(sequence_input, preds)
optimizer = tf.keras.optimizers.Adam(learning_rate)
model.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
return model