def main()

in tf-distribution-options/code/train_ps.py [0:0]


def main(args):

    if 'sourcedir.tar.gz' in args.tensorboard_dir:
        tensorboard_dir = re.sub('source/sourcedir.tar.gz', 'model', args.tensorboard_dir)
    else:
        tensorboard_dir = args.tensorboard_dir

    logging.info("Writing TensorBoard logs to {}".format(tensorboard_dir))

    logging.info("getting data")
    train_dataset = process_input(args.epochs, args.batch_size, args.train, 'train', args.data_config)
    eval_dataset = process_input(args.epochs, args.batch_size, args.eval, 'eval', args.data_config)
    validation_dataset = process_input(args.epochs, args.batch_size, args.validation, 'validation', args.data_config)

    logging.info("configuring model")
    logging.info("Hosts: "+ os.environ.get('SM_HOSTS'))

    size = len(args.hosts)

    #Deal with this
    model = get_model(args.learning_rate, args.weight_decay, args.optimizer, args.momentum, size)
    callbacks = []
    if args.current_host == args.hosts[0]:
        callbacks.append(ModelCheckpoint(args.output_data_dir + '/checkpoint-{epoch}.h5'))
        callbacks.append(CustomTensorBoardCallback(log_dir=tensorboard_dir))

    logging.info("Starting training")

    history = model.fit(x=train_dataset[0], 
              y=train_dataset[1],
              steps_per_epoch=(num_examples_per_epoch('train') // args.batch_size) // size,
              epochs=args.epochs, 
              validation_data=validation_dataset,
              validation_steps=(num_examples_per_epoch('validation') // args.batch_size) // size, callbacks=callbacks)

    score = model.evaluate(eval_dataset[0], 
                           eval_dataset[1], 
                           steps=num_examples_per_epoch('eval') // args.batch_size,
                           verbose=0)

    logging.info('Test loss:{}'.format(score[0]))
    logging.info('Test accuracy:{}'.format(score[1]))

    # PS: Save model and history only on worker 0
    if args.current_host == args.hosts[0]:
        save_history(args.model_dir + "/ps_history.p", history)
        save_model(model, args.model_dir)