in 3_predict/visualization_utils.py [0:0]
def __init__(self,
category_index,
max_examples_to_draw=5,
max_boxes_to_draw=20,
min_score_thresh=0.2,
use_normalized_coordinates=True,
summary_name_prefix='evaluation_image',
keypoint_edges=None):
"""Creates an EvalMetricOpsVisualization.
Args:
category_index: A category index (dictionary) produced from a labelmap.
max_examples_to_draw: The maximum number of example summaries to produce.
max_boxes_to_draw: The maximum number of boxes to draw for detections.
min_score_thresh: The minimum score threshold for showing detections.
use_normalized_coordinates: Whether to assume boxes and keypoints are in
normalized coordinates (as opposed to absolute coordinates).
Default is True.
summary_name_prefix: A string prefix for each image summary.
keypoint_edges: A list of tuples with keypoint indices that specify which
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
edges from keypoint 0 to 1 and from keypoint 2 to 4.
"""
self._category_index = category_index
self._max_examples_to_draw = max_examples_to_draw
self._max_boxes_to_draw = max_boxes_to_draw
self._min_score_thresh = min_score_thresh
self._use_normalized_coordinates = use_normalized_coordinates
self._summary_name_prefix = summary_name_prefix
self._keypoint_edges = keypoint_edges
self._images = []