def rollout()

in src/train.py [0:0]


def rollout(model, dataset, opts):
    # Put in greedy evaluation mode!
    set_decode_type(model, "greedy")
    model.eval()
    
    def eval_model_bat(bat):
        with torch.no_grad():
            cost, _ = model(move_to(bat['nodes'], opts.device), move_to(bat['graph'], opts.device))
        return cost.data.cpu()

    return torch.cat([
        eval_model_bat(bat)
        for bat in tqdm(
            DataLoader(dataset, batch_size=opts.batch_size, shuffle=False, num_workers=opts.num_workers), 
            disable=opts.no_progress_bar, ascii=True
        )
    ], 0)