in code/workflow/implementations/autopilot/bp_automl_stage.py [0:0]
def run_sm_autopilot(self, automl_config, context, wf_state) :
if not context or not wf_state :
raise Exception("SageMaker Autopilot automl module requires context and wf_state parameters")
try :
job_def = self.dsml.describe_auto_ml_job(AutoMLJobName=automl_config["JobName"])
except :
# DT: 03/10/2020 workaround DataWrangler bug P45265671
unique_s3_prefix = automl_config["Input"][0]["DataSource"]["S3DataSource"]["S3Uri"]
fixed_data_path = self.fix_datawrangler_data_path(self.s3, unique_s3_prefix)
automl_config["Input"][0]["DataSource"]["S3DataSource"]["S3Uri"] = fixed_data_path
self.dsml.create_auto_ml_job(AutoMLJobName = automl_config["JobName"],
InputDataConfig = automl_config["Input"],
OutputDataConfig = automl_config["Output"],
AutoMLJobConfig = automl_config["JobProperties"],
ProblemType = automl_config["Problem"],
AutoMLJobObjective = automl_config["Objective"],
RoleArn = automl_config["IamRole"])
results = self.monitor_status(automl_config["JobName"], context, self.dsml)
results["qualified"] = self.model_is_qualified(wf_state, results)
passed_config = wf_state["config"]["Payload"]
passed_config["model-config"]["job-results"] = results
passed_config["automl-config"]["data_uri"] = job_def["InputDataConfig"][0]["DataSource"]["S3DataSource"]["S3Uri"]
return passed_config