in autogluon-tab-with-test.py [0:0]
def train(args):
# SageMaker passes num_cpus, num_gpus and other args we can use to tailor training to
# the current container environment, but here we just use simple cpu context.
num_gpus = int(os.environ['SM_NUM_GPUS'])
current_host = args.current_host
hosts = args.hosts
model_dir = args.model_dir
target = args.target
# load training and validation data
training_dir = args.train
filename = args.filename
logging.info(training_dir)
train_data = task.Dataset(file_path=training_dir + '/' + filename)
predictor = task.fit(train_data = train_data, label=target, output_directory=model_dir)
return predictor