in sagemaker/src/hf_train_deploy.py [0:0]
def predict_fn(input_data, model):
"""Model prediction for a single input"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
sm = torch.nn.Softmax(dim=1)
input_data = input_data.to(device)
with torch.no_grad():
output = model(**input_data)
output = sm(output['logits'])
y = output.detach().numpy()[0]
return y