in ar-cnn/model.py [0:0]
def up_sampling(self,
layer_input,
skip_input,
num_filters,
batch_normalization=False,
dropout_rate=0):
'''
:param: layer_input: Input Layer to the downsampling block
:param: num_filters: Number of filters
:param: batch_normalization: Flag to check if batch normalization to be performed
:param: dropout_rate: To regularize overfitting
'''
decoder = concatenate(
[UpSampling2D(size=(2, 2))(layer_input), skip_input])
if batch_normalization:
decoder = BatchNormalization()(decoder)
for _ in range(self.CONV_PER_LAYER):
decoder = Conv2D(num_filters, (3, 3),
activation='relu',
padding='same')(decoder)
if dropout_rate:
decoder = Dropout(dropout_rate)(decoder)
return decoder