def infer_reward_state()

in Advanced workshops/AI Driving Olympics 2019/challenge_train_w_PPO/src/markov/environments/deepracer_racetrack_env_cv2.py [0:0]


    def infer_reward_state(self, steering_angle, speed):
        try:
            self.set_next_state()
        except Exception as ex:
            utils.json_format_logger("Unable to retrieve image from queue: {}".format(ex),
                       **utils.build_system_error_dict(utils.SIMAPP_ENVIRONMENT_EXCEPTION, utils.SIMAPP_EVENT_ERROR_CODE_500))

        # Read model state from Gazebo
        model_state = self.get_model_state('racecar', '')
        model_orientation = Rotation.from_quat([
            model_state.pose.orientation.x,
            model_state.pose.orientation.y,
            model_state.pose.orientation.z,
            model_state.pose.orientation.w])
        model_location = np.array([
            model_state.pose.position.x,
            model_state.pose.position.y,
            model_state.pose.position.z]) + \
            model_orientation.apply(RELATIVE_POSITION_OF_FRONT_OF_CAR)
        model_point = Point(model_location[0], model_location[1])
        model_heading = model_orientation.as_euler('zyx')[0]

        # Read the wheel locations from Gazebo
        left_rear_wheel_state = self.get_link_state('racecar::left_rear_wheel', '')
        left_front_wheel_state = self.get_link_state('racecar::left_front_wheel', '')
        right_rear_wheel_state = self.get_link_state('racecar::right_rear_wheel', '')
        right_front_wheel_state = self.get_link_state('racecar::right_front_wheel', '')
        wheel_points = [
            Point(left_rear_wheel_state.link_state.pose.position.x,
                  left_rear_wheel_state.link_state.pose.position.y),
            Point(left_front_wheel_state.link_state.pose.position.x,
                  left_front_wheel_state.link_state.pose.position.y),
            Point(right_rear_wheel_state.link_state.pose.position.x,
                  right_rear_wheel_state.link_state.pose.position.y),
            Point(right_front_wheel_state.link_state.pose.position.x,
                  right_front_wheel_state.link_state.pose.position.y)
        ]

        # Project the current location onto the center line and find nearest points
        current_ndist = self.center_line.project(model_point, normalized=True)
        prev_index, next_index = self.find_prev_next_waypoints(current_ndist)
        distance_from_prev = model_point.distance(Point(self.center_line.coords[prev_index]))
        distance_from_next = model_point.distance(Point(self.center_line.coords[next_index]))
        closest_waypoint_index = (prev_index, next_index)[distance_from_next < distance_from_prev]

        # Compute distance from center and road width
        nearest_point_center = self.center_line.interpolate(current_ndist, normalized=True)
        nearest_point_inner = self.inner_border.interpolate(self.inner_border.project(nearest_point_center))
        nearest_point_outer = self.outer_border.interpolate(self.outer_border.project(nearest_point_center))
        distance_from_center = nearest_point_center.distance(model_point)
        distance_from_inner = nearest_point_inner.distance(model_point)
        distance_from_outer = nearest_point_outer.distance(model_point)
        track_width = nearest_point_inner.distance(nearest_point_outer)
        is_left_of_center = (distance_from_outer < distance_from_inner) if self.reverse_dir \
            else (distance_from_inner < distance_from_outer)

        # Convert current progress to be [0,100] starting at the initial waypoint
        if self.reverse_dir:
            current_progress = self.start_ndist - current_ndist
        else:
            current_progress = current_ndist - self.start_ndist
        if current_progress < 0.0: current_progress = current_progress + 1.0
        current_progress = 100 * current_progress
        if current_progress < self.prev_progress:
            # Either: (1) we wrapped around and have finished the track,
            delta1 = current_progress + 100 - self.prev_progress
            # or (2) for some reason the car went backwards (this should be rare)
            delta2 = self.prev_progress - current_progress
            current_progress = (self.prev_progress, 100)[delta1 < delta2]

        # Car is off track if all wheels are outside the borders
        wheel_on_track = [self.road_poly.contains(p) for p in wheel_points]
        all_wheels_on_track = all(wheel_on_track)
        any_wheels_on_track = any(wheel_on_track)

        # Compute the reward
        if any_wheels_on_track:
            done = False
            params = {
                'all_wheels_on_track': all_wheels_on_track,
                'x': model_point.x,
                'y': model_point.y,
                'heading': model_heading * 180.0 / math.pi,
                'distance_from_center': distance_from_center,
                'progress': current_progress,
                'steps': self.steps,
                'speed': speed,
                'steering_angle': steering_angle * 180.0 / math.pi,
                'track_width': track_width,
                'waypoints': list(self.center_line.coords),
                'closest_waypoints': [prev_index, next_index],
                'is_left_of_center': is_left_of_center,
                'is_reversed': self.reverse_dir
            }
            try:
                reward = float(self.reward_function(params))
            except Exception as e:
                utils.json_format_logger("Exception {} in customer reward function. Job failed!".format(e),
                          **utils.build_user_error_dict(utils.SIMAPP_SIMULATION_WORKER_EXCEPTION, utils.SIMAPP_EVENT_ERROR_CODE_400))
                traceback.print_exc()
                sys.exit(1)
        else:
            done = True
            reward = CRASHED

        # Reset if the car position hasn't changed in the last 2 steps
        prev_pnt_dist = min(model_point.distance(self.prev_point), model_point.distance(self.prev_point_2))

        if prev_pnt_dist <= 0.0001 and self.steps % NUM_STEPS_TO_CHECK_STUCK == 0:
            done = True
            reward = CRASHED  # stuck

        # Simulation jobs are done when progress reaches 100
        if current_progress >= 100:
            done = True

        # Keep data from the previous step around
        self.prev_point_2 = self.prev_point
        self.prev_point = model_point
        self.prev_progress = current_progress

        # Set the reward and done flag
        self.reward = reward
        self.reward_in_episode += reward
        self.done = done

        # Trace logs to help us debug and visualize the training runs
        # btown TODO: This should be written to S3, not to CWL.
        logger.info('SIM_TRACE_LOG:%d,%d,%.4f,%.4f,%.4f,%.2f,%.2f,%d,%.4f,%s,%s,%.4f,%d,%.2f,%s\n' % (
            self.episodes, self.steps, model_location[0], model_location[1], model_heading,
            self.steering_angle,
            self.speed,
            self.action_taken,
            self.reward,
            self.done,
            all_wheels_on_track,
            current_progress,
            closest_waypoint_index,
            self.track_length,
            time.time()))

        # Terminate this episode when ready
        if done and node_type == SIMULATION_WORKER:
            self.finish_episode(current_progress)