def main()

in Advanced workshops/AI Driving Olympics 2019/challenge_train_DQN/src/training_worker.py [0:0]


def main():
    screen.set_use_colors(False)

    parser = argparse.ArgumentParser()
    parser.add_argument('-pk', '--preset_s3_key',
                        help="(string) Name of a preset to download from S3",
                        type=str,
                        required=False)
    parser.add_argument('-ek', '--environment_s3_key',
                        help="(string) Name of an environment file to download from S3",
                        type=str,
                        required=False)
    parser.add_argument('--model_metadata_s3_key',
                        help="(string) Model Metadata File S3 Key",
                        type=str,
                        required=False)
    parser.add_argument('-c', '--checkpoint-dir',
                        help='(string) Path to a folder containing a checkpoint to write the model to.',
                        type=str,
                        default='./checkpoint')
    parser.add_argument('--pretrained-checkpoint-dir',
                        help='(string) Path to a folder for downloading a pre-trained model',
                        type=str,
                        default=PRETRAINED_MODEL_DIR)
    parser.add_argument('--s3_bucket',
                        help='(string) S3 bucket',
                        type=str,
                        default=os.environ.get("SAGEMAKER_SHARED_S3_BUCKET_PATH", "gsaur-test"))
    parser.add_argument('--s3_prefix',
                        help='(string) S3 prefix',
                        type=str,
                        default='sagemaker')
    parser.add_argument('--framework',
                        help='(string) tensorflow or mxnet',
                        type=str,
                        default='tensorflow')
    parser.add_argument('--pretrained_s3_bucket',
                        help='(string) S3 bucket for pre-trained model',
                        type=str)
    parser.add_argument('--pretrained_s3_prefix',
                        help='(string) S3 prefix for pre-trained model',
                        type=str,
                        default='sagemaker')
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=os.environ.get("AWS_REGION", "us-east-1"))

    start_redis_server()
    args, unknown = parser.parse_known_args()

    s3_client = SageS3Client(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, aws_region=args.aws_region)

    # Load the model metadata
    model_metadata_local_path = os.path.join(CUSTOM_FILES_PATH, 'model_metadata.json')
    load_model_metadata(s3_client, args.model_metadata_s3_key, model_metadata_local_path)
    s3_client.upload_file(os.path.normpath("%s/model/model_metadata.json" % args.s3_prefix), model_metadata_local_path)
    shutil.copy2(model_metadata_local_path, SM_MODEL_OUTPUT_DIR)

    # Register the gym enviroment, this will give clients the ability to creat the enviroment object
    register(id=defaults.ENV_ID, entry_point=defaults.ENTRY_POINT,
             max_episode_steps=defaults.MAX_STEPS, reward_threshold=defaults.THRESHOLD)

    success_custom_preset = False
    if args.preset_s3_key:
        preset_local_path = "./markov/presets/preset.py"
        success_custom_preset = s3_client.download_file(s3_key=args.preset_s3_key, local_path=preset_local_path)
        if not success_custom_preset:
            logger.info("Could not download the preset file. Using the default DeepRacer preset.")
        else:
            preset_location = "markov.presets.preset:graph_manager"
            graph_manager = short_dynamic_import(preset_location, ignore_module_case=True)
            success_custom_preset = s3_client.upload_file(
                s3_key=os.path.normpath("%s/presets/preset.py" % args.s3_prefix), local_path=preset_local_path)
            if success_custom_preset:
                logger.info("Using preset: %s" % args.preset_s3_key)

    if not success_custom_preset:
        from markov.sagemaker_graph_manager import get_graph_manager
        params_blob = os.environ.get('SM_TRAINING_ENV', '')
        if params_blob:
            params = json.loads(params_blob)
            sm_hyperparams_dict = params["hyperparameters"]
        else:
            sm_hyperparams_dict = {}
        graph_manager, robomaker_hyperparams_json = get_graph_manager(**sm_hyperparams_dict)
        s3_client.upload_hyperparameters(robomaker_hyperparams_json)
        logger.info("Uploaded hyperparameters.json to S3")

    host_ip_address = get_ip_from_host()
    s3_client.write_ip_config(host_ip_address)
    logger.info("Uploaded IP address information to S3: %s" % host_ip_address)

    use_pretrained_model = False
    if args.pretrained_s3_bucket and args.pretrained_s3_prefix:
        s3_client_pretrained = SageS3Client(bucket=args.pretrained_s3_bucket,
                                            s3_prefix=args.pretrained_s3_prefix,
                                            aws_region=args.aws_region)
        use_pretrained_model = s3_client_pretrained.download_model(args.pretrained_checkpoint_dir)

    memory_backend_params = RedisPubSubMemoryBackendParameters(redis_address="localhost",
                                                               redis_port=6379,
                                                               run_type='trainer',
                                                               channel=args.s3_prefix)

    ds_params_instance = S3BotoDataStoreParameters(bucket_name=args.s3_bucket,
                                                   checkpoint_dir=args.checkpoint_dir, aws_region=args.aws_region,
                                                   s3_folder=args.s3_prefix)
    graph_manager.data_store_params = ds_params_instance

    data_store = S3BotoDataStore(ds_params_instance)
    data_store.graph_manager = graph_manager
    graph_manager.data_store = data_store

    training_worker(
        graph_manager=graph_manager,
        checkpoint_dir=args.checkpoint_dir,
        use_pretrained_model=use_pretrained_model,
        framework=args.framework,
        memory_backend_params=memory_backend_params
    )