in ml-images/s3/app.py [0:0]
def util_dl_s3_model():
logger.info('Download model files from S3')
if not os.path.isdir(MODEL_NLP_DIR):
os.mkdir(MODEL_NLP_DIR)
logger.info('Created folder: ' + MODEL_NLP_DIR)
else:
logger.info('Folder already exists: ' + MODEL_NLP_DIR)
s3.meta.client.download_file(os.environ['S3_MODEL_BUCKET_NAME'], os.environ['S3_NLP1_MODEL'], '/tmp/nlp1/pytorch_model.bin')
s3.meta.client.download_file(os.environ['S3_MODEL_BUCKET_NAME'], os.environ['S3_NLP1_CONFIG'], '/tmp/nlp1/config.json')
s3.meta.client.download_file(os.environ['S3_MODEL_BUCKET_NAME'], os.environ['S3_NLP1_TOKENIZER'], '/tmp/nlp1/tokenizer.json')
s3.meta.client.download_file(os.environ['S3_MODEL_BUCKET_NAME'], os.environ['S3_NLP1_TOKENIZER_CONFIG'], '/tmp/nlp1/tokenizer_config.json')
tokenizer = AutoTokenizer.from_pretrained("/tmp/nlp1/")
model = AutoModelForQuestionAnswering.from_pretrained("/tmp/nlp1/")
return [model, tokenizer]