in ml-images/s3/app.py [0:0]
def lambda_handler(event, context):
body = json.loads(event['body'])
question = body['question']
context = body['context']
# Gather the inputs
inputs = loaded_model_tokenizer[1].encode_plus(question,context,add_special_tokens=True,return_tensors="pt")
input_ids = inputs["input_ids"].tolist()[0]
# Perform the inference
output = loaded_model_tokenizer[0](**inputs)
answer_start_scores = output.start_logits
answer_end_scores = output.end_logits
answer_start = torch.argmax(answer_start_scores)
answer_end = torch.argmax(answer_end_scores) + 1
answer = loaded_model_tokenizer[1].convert_tokens_to_string(loaded_model_tokenizer[1].convert_ids_to_tokens(input_ids[answer_start:answer_end]))
print('Question: {0}, Answer: {1}'.format(question, answer))
return {
'statusCode': 200,
'headers': {'Content-Type': 'application/json'},
'body': json.dumps({
'Question': question,
'Answer': answer
})
}