in code/source/postprocessing.py [0:0]
def preds_to_dict_single(sent, y_pred_tags):
"""
Postprocessing to format tag predictions into a dictionary of {tagged propertis: corresponding words}
for each initial sentence.
Function to transform the output into a dict of Tags and Values
Same function as preds_to_dict_single with lower casing and replacing spaces by underscores in tags
:param sent: (list) list of initial sentences as list of words
:param y_pred_tags: (list) list of grouped predictions created by map_split_preds_to_idx
:return: dictionary of {tagged propertis: corresponding words}
for each initial sentence.
"""
properties = {}
for word, tag in zip(sent, y_pred_tags):
tag_values = properties.get(tag, [])# Get tag if existing, otherwise set it to an empty list
tag_values.append(word)
properties[tag] = tag_values
if "O" in properties.keys():
del properties["O"]
conc_properties = dict((k.lower().replace(' ', '_'), list(v)) for k, v in properties.items())
return conc_properties