def simplify_graph()

in libs/apls/osmnx_funcs.py [0:0]


def simplify_graph(G, strict=True, verbose=False):
    """
    Simplify a graph's topology by removing all nodes that are not intersections
    or dead-ends.
    Create an edge directly between the end points that encapsulate them,
    but retain the geometry of the original edges, saved as attribute in new
    edge.
    Parameters
    ----------
    G : networkx multidigraph
    strict : bool
        if False, allow nodes to be end points even if they fail all other rules
        but have edges with different OSM IDs
    Returns
    -------
    networkx multidigraph
    """

    if is_simplified(G):
        raise Exception('This graph has already been simplified, cannot simplify it again.')

    if verbose:
        print('Begin topologically simplifying the graph...')
    G = G.copy()
    initial_node_count = len(list(G.nodes()))
    initial_edge_count = len(list(G.edges()))
    all_nodes_to_remove = []
    all_edges_to_add = []

    # construct a list of all the paths that need to be simplified
    paths = get_paths_to_simplify(G, strict=strict)

    start_time = time.time()
    for path in paths:

        # add the interstitial edges we're removing to a list so we can retain
        # their spatial geometry
        edge_attributes = {}
        for u, v in zip(path[:-1], path[1:]):

            # there shouldn't be multiple edges between interstitial nodes
            if not G.number_of_edges(u, v) == 1:
                if verbose:
                    print('Multiple edges between "{}" and "{}" found when simplifying'.format(u, v), level=lg.WARNING)

            # the only element in this list as long as above check is True
            # (MultiGraphs use keys (the 0 here), indexed with ints from 0 and
            # up)
            # print(G.edges([u,v]))
            try:
                edge = G.edges[u, v, 0]
            except:
                edge = G.edges[u, v, "0"]
                
            for key in edge:
                if key in edge_attributes:
                    # if this key already exists in the dict, append it to the
                    # value list
                    edge_attributes[key].append(edge[key])
                else:
                    # if this key doesn't already exist, set the value to a list
                    # containing the one value
                    edge_attributes[key] = [edge[key]]

        for key in edge_attributes:
            # print("key", key, "edge_attributes:", edge_attributes)
            # print(" ", edge_attributes[key])
            # don't touch the length attribute, we'll sum it at the end
            if len(set(edge_attributes[key])) == 1 and not key == 'length':
                # if there's only 1 unique value in this attribute list,
                # consolidate it to the single value (the zero-th)
                edge_attributes[key] = edge_attributes[key][0]
            elif not key == 'length':
                # otherwise, if there are multiple values, keep one of each value
                edge_attributes[key] = list(set(edge_attributes[key]))

        # construct the geometry and sum the lengths of the segments
        edge_attributes['geometry'] = LineString([Point((G.nodes[node]['x'], G.nodes[node]['y'])) for node in path])
        edge_attributes['length'] = sum(edge_attributes['length'])

        # add the nodes and edges to their lists for processing at the end
        all_nodes_to_remove.extend(path[1:-1])
        all_edges_to_add.append({'origin':path[0],
                                 'destination':path[-1],
                                 'attr_dict':edge_attributes})

    # for each edge to add in the list we assembled, create a new edge between
    # the origin and destination
    for edge in all_edges_to_add:
        G.add_edge(edge['origin'], edge['destination'], **edge['attr_dict'])

    # finally remove all the interstitial nodes between the new edges
    G.remove_nodes_from(set(all_nodes_to_remove))

    G.graph['simplified'] = True

    msg = 'Simplified graph (from {:,} to {:,} nodes and from {:,} to {:,} edges) in {:,.2f} seconds'
    if verbose:
        print(msg.format(initial_node_count, len(list(G.nodes())), initial_edge_count, len(list(G.edges())), time.time()-start_time))
    return G