in robot_ws/src/rl_agent/markov/single_machine_training_worker.py [0:0]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--markov-preset-file',
help="(string) Name of a preset file to run in Markov's preset directory.",
type=str,
default=os.environ.get("MARKOV_PRESET_FILE", "meiro_runner.py"))
parser.add_argument('-c', '--local_model_directory',
help='(string) Path to a folder containing a checkpoint to restore the model from.',
type=str,
default=os.environ.get("LOCAL_MODEL_DIRECTORY", "./checkpoint"))
parser.add_argument('-n', '--num_workers',
help="(int) Number of workers for multi-process based agents, e.g. A3C",
default=1,
type=int)
parser.add_argument('--model-s3-bucket',
help='(string) S3 bucket where trained models are stored. It contains model checkpoints.',
type=str,
default=os.environ.get("MODEL_S3_BUCKET"))
parser.add_argument('--model-s3-prefix',
help='(string) S3 prefix where trained models are stored. It contains model checkpoints.',
type=str,
default=os.environ.get("MODEL_S3_PREFIX"))
parser.add_argument('--aws-region',
help='(string) AWS region',
type=str,
default=os.environ.get("ROS_AWS_REGION", "us-west-2"))
parser.add_argument('--checkpoint-save-secs',
help="(int) Time period in second between 2 checkpoints",
type=int,
default=300)
parser.add_argument('--save-frozen-graph',
help="(bool) True if we need to store the frozen graph",
type=bool,
default=True)
args = parser.parse_args()
if args.markov_preset_file:
markov_path = imp.find_module("markov")[1]
preset_location = os.path.join(markov_path, "presets", args.markov_preset_file)
path_and_module = preset_location + ":graph_manager"
graph_manager = short_dynamic_import(path_and_module, ignore_module_case=True)
print("Using custom preset file from Markov presets directory!")
else:
raise ValueError("Unable to determine preset file")
# TODO: support other frameworks
task_parameters = TaskParameters(framework_type=Frameworks.tensorflow,
checkpoint_save_secs=args.checkpoint_save_secs)
task_parameters.__dict__['checkpoint_save_dir'] = args.local_model_directory
task_parameters.__dict__ = add_items_to_dict(task_parameters.__dict__, args.__dict__)
data_store_params_instance = S3BotoDataStoreParameters(bucket_name=args.model_s3_bucket,
s3_folder=args.model_s3_prefix,
checkpoint_dir=args.local_model_directory,
aws_region=args.aws_region)
data_store = S3BotoDataStore(data_store_params_instance)
if args.save_frozen_graph:
data_store.graph_manager = graph_manager
graph_manager.data_store_params = data_store_params_instance
graph_manager.data_store = data_store
graph_manager.should_stop = should_stop_training_based_on_evaluation
start_graph(graph_manager=graph_manager, task_parameters=task_parameters)