in src/similarity/siamese.py [0:0]
def test_model(model, test_dl):
model.eval()
running_loss = 0.0
running_corrects = 0
for data in test_dl:
img1 = data['img1'].to(DEVICE)
img2 = data['img2'].to(DEVICE)
labels = data['label'].to(DEVICE).float()
distance = model.forward(img1,img2)
loss = contrastive_loss(distance, labels)
predictions = (torch.abs(distance - labels) < args.similarity_margin).int()
running_loss += loss.item()
running_corrects += torch.sum(predictions)
test_loss = running_loss / len(test_dl.dataset)
test_acc = running_corrects.double() / len(test_dl.dataset)
logger.info('Test set: Average loss: {:.8f}\n'.format(test_loss, test_acc))
return test_loss, test_acc