in assets/functions/upload_result/app.py [0:0]
def lambda_handler(event, context):
ATHENA_OUTPUT_BUCKET = os.environ['Athena_bucket']
S3_BUCKET = os.environ['Working_bucket']
DB_SCHEMA = os.environ['Db_schema']
BATCH_START = event['Batch_start']
BATCH_END = event['Batch_end']
FORECAST_START = event['Data_end']
FORECAST_PERIOD = event['Forecast_period']
prediction_length = FORECAST_PERIOD * 24
connection = connect(s3_staging_dir='s3://{}/'.format(ATHENA_OUTPUT_BUCKET), region_name=REGION)
output = 'meteranalytics/inference/batch_%s_%s/batch.json.out' % (BATCH_START, BATCH_END)
boto3.Session().resource('s3').Bucket(S3_BUCKET).Object(output).download_file('/tmp/batch.out.json')
print('get inference result')
freq = 'H'
prediction_time = pd.Timestamp(FORECAST_START, freq=freq)
prediction_index = pd.date_range(start=prediction_time, end=prediction_time+pd.Timedelta(prediction_length-1, unit='H'), freq=freq)
dict_of_samples = {}
meterids = get_meters(connection, BATCH_START, BATCH_END, DB_SCHEMA)
results = pd.DataFrame(columns = ['meterid', 'datetime', 'kwh'])
i = 0
with open('/tmp/batch.out.json') as fp:
for line in fp:
df = pd.DataFrame(data={**json.loads(line)['quantiles'],
**dict_of_samples}, index=prediction_index)
dataframe=pd.DataFrame({'meter_id': np.array([meterids[i] for x in range(df['0.9'].count())]),
'datetime':df.index.values,
'consumption':df['0.9'].values})
i = i+1
results = results.append(dataframe)
results.to_csv('/tmp/forecast.csv', index=False)
boto3.Session().resource('s3').Bucket(S3_BUCKET).Object(os.path.join('meteranalytics', 'forecast/{}/batch_{}_{}.csv'.format(FORECAST_START, BATCH_START, BATCH_END))).upload_file('/tmp/forecast.csv')