in lambda-rpi-inference/greengrassObjectClassification.py [0:0]
def predict(net, data):
print("Starting predict method")
normalize = gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
test_augs = gluon.data.vision.transforms.Compose([
# gluon.data.vision.transforms.Resize(256),
# gluon.data.vision.transforms.CenterCrop(224),
gluon.data.vision.transforms.ToTensor(),
normalize])
print("Set up augmentations")
#nda = mx.img.imdecode(data)
print("Data shape: " + str(data.shape))
nda = mx.nd.array(data)
print("NDA shape: " + str(nda.shape))
img = test_augs(nda)
print("Image shape: " + str(img.shape))
img = img.expand_dims(axis=0)
img = img.astype('float32') # for gpu context
print("Image shape: " + str(img.shape))
output = net(img)
prediction = mx.nd.argmax(output, axis=1)
response = prediction.asnumpy().tolist()[0]
return response