def sagemaker_call()

in cvat-serverless/functions/endpoints/openvino_reidentification.py [0:0]


def sagemaker_call(image):
    image_np = np.array(image.getdata())[:, :3].reshape(
            (-1, image.height, image.width)).astype(np.uint8)
    image_np = np.expand_dims(image_np, axis=0)

    data = {'instances': image_np.tolist()}

    client = boto3.client('runtime.sagemaker')

    # response = client.invoke_endpoint(EndpointName='openvinio-reidentification-2021-09-01-03-56-10',
    #                                   #TargetContainerHostname=settings.OPENVINO_IDENTIFICATION_NAME,
    #                                   Body=json.dumps(data),
    #                                   ContentType='application/json')

    response = client.invoke_endpoint(EndpointName=settings.OPENVINO_IDENTIFICATION_ENDPOINT,
                                      TargetContainerHostname=settings.OPENVINO_IDENTIFICATION_NAME,
                                      Body=json.dumps(data),
                                      ContentType='application/json')
    response_body = response['Body'].read()
    result = json.loads(response_body.decode('utf-8'))
    result_np = np.array(result['predictions'])
    return result_np