def tpfp_default()

in models/vision/detection/awsdet/core/evaluation/mean_ap.py [0:0]


def tpfp_default(det_bboxes,
                 gt_bboxes,
                 gt_bboxes_ignore=None,
                 iou_thr=0.5,
                 area_ranges=None):
    """Check if detected bboxes are true positive or false positive.

    Args:
        det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
            of shape (k, 4). Default: None
        iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.
        area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
            in the format [(min1, max1), (min2, max2), ...]. Default: None.

    Returns:
        tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
            each array is (num_scales, m).
    """
    # an indicator of ignored gts
    gt_ignore_inds = np.concatenate(
        (np.zeros(gt_bboxes.shape[0], dtype=np.bool),
         np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
    # stack gt_bboxes and gt_bboxes_ignore for convenience
    gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    if area_ranges is None:
        area_ranges = [(None, None)]
    num_scales = len(area_ranges)
    # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
    # a certain scale
    tp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp = np.zeros((num_scales, num_dets), dtype=np.float32)

    # if there is no gt bboxes in this image, then all det bboxes
    # within area range are false positives
    if gt_bboxes.shape[0] == 0:
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0]) * (
                det_bboxes[:, 3] - det_bboxes[:, 1])
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
        return tp, fp

    ious = bbox_overlaps(det_bboxes, gt_bboxes)
    # for each det, the max iou with all gts
    ious_max = ious.max(axis=1)
    # for each det, which gt overlaps most with it
    ious_argmax = ious.argmax(axis=1)
    # sort all dets in descending order by scores
    sort_inds = np.argsort(-det_bboxes[:, -1])
    for k, (min_area, max_area) in enumerate(area_ranges):
        gt_covered = np.zeros(num_gts, dtype=bool)
        # if no area range is specified, gt_area_ignore is all False
        if min_area is None:
            gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
        else:
            gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
                gt_bboxes[:, 3] - gt_bboxes[:, 1])
            gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
        for i in sort_inds:
            if ious_max[i] >= iou_thr:
                matched_gt = ious_argmax[i]
                if not (gt_ignore_inds[matched_gt]
                        or gt_area_ignore[matched_gt]):
                    if not gt_covered[matched_gt]:
                        gt_covered[matched_gt] = True
                        tp[k, i] = 1
                    else:
                        fp[k, i] = 1
                # otherwise ignore this detected bbox, tp = 0, fp = 0
            elif min_area is None:
                fp[k, i] = 1
            else:
                bbox = det_bboxes[i, :4]
                area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
                if area >= min_area and area < max_area:
                    fp[k, i] = 1
    return tp, fp