def predict_fn()

in code/train_deploy.py [0:0]


def predict_fn(input_data, model):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    model.eval()

    input_id, input_mask = input_data
    input_id = input_id.to(device)
    input_mask = input_mask.to(device)
    print("============== encoded data =================")
    print(input_id, input_mask)
    with torch.no_grad():
        y = model(input_id, attention_mask=input_mask)[0]
        print("=============== inference result =================")
        print(y)
    return y