in code/train_deploy.py [0:0]
def predict_fn(input_data, model):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
input_id, input_mask = input_data
input_id = input_id.to(device)
input_mask = input_mask.to(device)
print("============== encoded data =================")
print(input_id, input_mask)
with torch.no_grad():
y = model(input_id, attention_mask=input_mask)[0]
print("=============== inference result =================")
print(y)
return y