in notebooks/modelscript_tensorflow.py [0:0]
def predict(model, payload):
try:
if(type(payload) == str):
data = [payload]
else:
data = [payload.decode()]# Multi model endpoints -> [payload[0]['body'].decode()]
out = np.asarray(model(data)).tolist()
except Exception as e:
out = str(e)
return [json.dumps({'output':[out],'tfeager': tf.executing_eagerly()})]