def evaluate()

in a2d2/a2d2_dataset.py [0:0]


    def evaluate(self,
                 results,
                 metric=None,
                 logger=None,
                 pklfile_prefix=None,
                 submission_prefix=None,
                 show=False,
                 out_dir=None,
                 pipeline=None):
        """Evaluation in KITTI protocol.

        Args:
            results (list[dict]): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            submission_prefix (str | None): The prefix of submission datas.
                If not specified, the submission data will not be generated.
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.

        Returns:
            dict[str, float]: Results of each evaluation metric.
        """
        result_files, tmp_dir = self.format_results(results, pklfile_prefix)
        from mmdet3d.core.evaluation import kitti_eval
        gt_annos = [info['annos'] for info in self.data_infos]

        if isinstance(result_files, dict):
            ap_dict = dict()
            for name, result_files_ in result_files.items():
                eval_types = ['bbox', 'bev', '3d']
                if 'img' in name:
                    eval_types = ['bbox']
                ap_result_str, ap_dict_ = kitti_eval(
                    gt_annos,
                    result_files_,
                    self.CLASSES,
                    eval_types=eval_types)
                for ap_type, ap in ap_dict_.items():
                    ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap))

                print_log(
                    f'Results of {name}:\n' + ap_result_str, logger=logger)

        else:
            if metric == 'img_bbox':
                ap_result_str, ap_dict = kitti_eval(
                    gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
            else:
                ap_result_str, ap_dict = kitti_eval(gt_annos, result_files,
                                                    self.CLASSES)
            print_log('\n' + ap_result_str, logger=logger)

        if tmp_dir is not None:
            tmp_dir.cleanup()
        if show:
            self.show(results, out_dir, pipeline=pipeline)
        return ap_dict