def _get_loss()

in source/train.py [0:0]


    def _get_loss(self, data):
        # How loss is calculated on train_loop 
        metrics_dict = self._model(data)
        metrics_dict = {
            k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v)
            for k, v in metrics_dict.items()
        }
        total_losses_reduced = sum(loss for loss in metrics_dict.values())
        return total_losses_reduced