in getting_started/utils/lookout_equipment_utils.py [0:0]
def _load_model_response(self):
"""
Use the trained model description to extract labelled and predicted
ranges of anomalies. This method will extract them from the
DescribeModel API from Lookout for Equipment and store them in the
labelled_ranges and predicted_ranges properties.
"""
describe_model_response = self.client.describe_model(
ModelName=self.model_name
)
if self.labelled_ranges is None:
self.labelled_ranges = eval(
describe_model_response['ModelMetrics']
)['labeled_ranges']
self.labelled_ranges = pd.DataFrame(self.labelled_ranges)
self.labelled_ranges['start'] = pd.to_datetime(self.labelled_ranges['start'])
self.labelled_ranges['end'] = pd.to_datetime(self.labelled_ranges['end'])
self.predicted_ranges = eval(
describe_model_response['ModelMetrics']
)['predicted_ranges']
self.predicted_ranges = pd.DataFrame(self.predicted_ranges)
self.predicted_ranges['start'] = pd.to_datetime(self.predicted_ranges['start'])
self.predicted_ranges['end'] = pd.to_datetime(self.predicted_ranges['end'])