in imaging/src/radiomics_utils.py [0:0]
def compute_features(imageName, maskName):
extractor = featureextractor.RadiomicsFeatureExtractor()
featureVector = extractor.execute(imageName, maskName)
new_dict={}
for featureName in featureVector.keys():
print("Computed %s: %s" % (featureName, featureVector[featureName]))
print(type(featureVector[featureName]))
if isinstance(featureVector[featureName], np.ndarray):
new_dict[featureName]=float(featureVector[featureName])
else:
new_dict[featureName]=featureVector[featureName]
df=pd.DataFrame.from_dict(new_dict, orient='index').T
df=df.convert_dtypes(convert_integer=False)
df['imageName']=imageName
df['maskName']=maskName
return df