in src/transform.py [0:0]
def predict_fn(input_data, model):
"""Preprocess input data
We implement this because the default predict_fn uses .predict(), but our model is a preprocessor
so we want to use .transform().
The output is returned in the following order:
rest of features either one hot encoded or standardized
"""
features = model.transform(input_data)
if label_column in input_data:
# Return the label (as the first column) and the set of features.
return np.insert(features, 0, input_data[label_column], axis=1)
else:
# Return only the set of features
return features