in builtin_algorithm_hpo_tabular/util/classification_report.py [0:0]
def plot_roc_curve(y_real,
y_predict,
axis=None,
plot_style='ggplot'):
if axis is None: # for standalone plot
plt.figure()
ax = plt.gca()
else: # for plots inside a subplot
ax = axis
plt.style.use(plot_style)
metrics_FPR, metrics_TPR, _ = metrics.roc_curve(y_real, y_predict)
metrics_AUC = metrics.roc_auc_score(y_real, y_predict)
ax.set_aspect(aspect=0.95)
ax.plot(metrics_FPR,
metrics_TPR,
color='b',
linewidth=0.7)
ax.fill_between(metrics_FPR,
metrics_TPR,
step='post',
alpha=0.2,
color='b')
ax.plot([0, 1], [0, 1], color='k', linestyle='--', linewidth=1)
ax.set_xlim([-0.05, 1.0])
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.set_title('ROC curve: AUC={0:0.3f}'.format(metrics_AUC))
if axis is None: # for standalone plots
plt.tight_layout()
plt.show()