distributed_training/train_code/pytorch_mnist.py [156:172]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        )


    torch.manual_seed(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # select a single rank per node to download data
    is_first_local_rank = local_rank == 0
    if is_first_local_rank:
        train_dataset = datasets.MNIST(
            data_path,
            train=True,
            download=True,
            transform=transforms.Compose(
                [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
            ),
        )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



distributed_training/train_code/pytorch_mnist_smdp.py [183:199]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        )

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # select a single rank per node to download data
    is_first_local_rank = local_rank == 0
    if is_first_local_rank:
        train_dataset = datasets.MNIST(
            data_path,
            train=True,
            download=True,
            transform=transforms.Compose(
                [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
            ),
        )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



