in distributed_training/src_dir/util.py [0:0]
def adjust_learning_rate(optimizer, epoch, step, len_epoch, args):
factor = epoch // 30
if epoch >= 80:
factor = factor + 1
lr = args.lr * (0.1**factor)
# Warmup
if epoch < 5:
lr = lr * float(1 + step + epoch * len_epoch) / (5. * len_epoch)
if args.rank == 0:
print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr