in distributed_training/src_dir/main_trainer.py [0:0]
def main():
print("start main function")
args = args_fn()
args.exp_cnt = 0
print(
"args.data_parallel : {} , args.model_parallel : {}, args.apex : {} , args.num_gpus : {}, args.num_classes"
.format(args.data_parallel, args.model_parallel, args.apex,
args.num_gpus, args.num_classes))
args.use_cuda = int(args.num_gpus) > 0
# os.environ['PYTHONWARNINGS'] = 'ignore:semaphore_tracker:UserWarning'
args.kwargs = {
'num_workers': 16,
'pin_memory': True
} if args.use_cuda else {}
args.device = torch.device("cuda" if args.use_cuda else "cpu")
if args.exp_cnt == 0:
args = dis_util.dist_init(train, args)