def __init__()

in src/model.py [0:0]


    def __init__(self, in_feats: int, h_feats: int, num_classes: int) -> None:
        super(GCN, self).__init__()
        self.conv1 = GraphConv(in_feats, h_feats)
        self.conv2 = GraphConv(h_feats, h_feats)
        # the gate layer that maps node feature to outputs
        self.gate_nn = nn.Linear(h_feats, num_classes)
        self.gap = GlobalAttentionPooling(self.gate_nn)
        # the output layer making predictions
        self.output = nn.Linear(h_feats, num_classes)