def image_augmentation()

in source_directory/training/training_script.py [0:0]


def image_augmentation(image, label):
    image = image['image_input']
    
    # Add 6 pixels of padding
    image = tf.image.resize_with_crop_or_pad(image, 32 + 6, 32 + 6) 
    # Random crop back to the original size
    image = tf.image.random_crop(image, size=[32, 32, 3])
    
    image = tf.image.random_flip_left_right(image)
    image = tf.image.random_flip_up_down(image)
    
    image = tf.image.rot90(image, k=np.random.randint(4))
    image = tf.image.random_brightness(image, max_delta=0.5) # Random brightness
    
    image = {'image_input': image}
    return image, label