in src/drift_visualizer.py [0:0]
def __plot_top_k_drifts(drift_df, feature, ylabel, top_k):
df = drift_df.copy()
feature_score = [(feat, max(df[df.Feature == feat][feature]))
for feat in df.Feature.value_counts().keys()]
# Sort by drift score to pick top k features
feature_score = [x[0] for x in sorted(feature_score, key=lambda x: x[1], reverse=True)][:top_k]
df = df[['Feature', feature, 'Time']]
df = df[df.Feature.isin(feature_score)]
df = df.pivot(index='Time', columns='Feature', values=feature)
ax = df.plot()
ax.set_xlabel('Time')
ax.set_ylabel(ylabel)
ax.legend(bbox_to_anchor=(1.1, 1.05))