in afa/app/app.py [0:0]
def panel_ml_forecast_summary():
"""
"""
df = state.report["data"].get("df", None)
df_preds = state.report["afc"].get("df_preds", None)
df_results = state.report["afc"].get("df_results", None)
df_backtests = state.report["afc"].get("df_backtests", None)
if df is None or df_results is None or df_backtests is None or \
df_preds is None:
return
with st.beta_expander("🎯 Forecast Summary", expanded=True):
df_accuracies = calc_afc_ml_accuracies(METRIC)
ml_acc = df_accuracies["acc"].mean()
_cols = st.beta_columns([3,1])
with _cols[0]:
st.write(dedent(f"""