in source/consumer/lambda_handler.py [0:0]
def process_transcribe(asset, workflow, results, type):
metadata = json.loads(results)
transcript = metadata["results"]["transcripts"][0]
transcript["workflow"] = workflow
transcript_time = metadata["results"]["items"]
index_name = type+"transcript"
es = connect_es(es_endpoint)
index_document(es, asset, index_name, transcript)
transcribe_items = []
for item in transcript_time:
content = item["alternatives"][0]["content"]
confidence = normalize_confidence(item["alternatives"][0]["confidence"])
if "start_time" in item and "end_time" in item:
start_time = convert_to_milliseconds(item["start_time"])
end_time = convert_to_milliseconds(item["end_time"])
item["start_time"] = start_time
item["end_time"] = end_time
del item["alternatives"]
item["confidence"] = confidence
item["content"] = content
item["workflow"] = workflow
transcribe_items.append(item)
bulk_index(es, asset, index_name, transcribe_items)