aws / amazon-braket-default-simulator-python
Conditional Complexity

The distribution of complexity of units (measured with McCabe index).

Intro
  • Conditional complexity (also called cyclomatic complexity) is a term used to measure the complexity of software. The term refers to the number of possible paths through a program function. A higher value ofter means higher maintenance and testing costs (infosecinstitute.com).
  • Conditional complexity is calculated by counting all conditions in the program that can affect the execution path (e.g. if statement, loops, switches, and/or operators, try and catch blocks...).
  • Conditional complexity is measured at the unit level (methods, functions...).
  • Units are classified in four categories based on the measured McCabe index: 1-5 (simple units), 6-10 (medium complex units), 11-25 (complex units), 26+ (very complex units).
Learn more...
Conditional Complexity Overall
  • There are 336 units with 1,251 lines of code in units (60.3% of code).
    • 0 very complex units (0 lines of code)
    • 0 complex units (0 lines of code)
    • 0 medium complex units (0 lines of code)
    • 5 simple units (68 lines of code)
    • 331 very simple units (1,183 lines of code)
0% | 0% | 0% | 5% | 94%
Legend:
51+
26-50
11-25
6-10
1-5
Alternative Visuals
Conditional Complexity per Extension
51+
26-50
11-25
6-10
1-5
py0% | 0% | 0% | 5% | 94%
Conditional Complexity per Logical Component
primary logical decomposition
51+
26-50
11-25
6-10
1-5
src/braket/default_simulator0% | 0% | 0% | 5% | 94%
src/braket/default_simulator/simulation_strategies0% | 0% | 0% | 0% | 100%
src/braket/simulator0% | 0% | 0% | 0% | 100%
Most Complex Units
Top 20 most complex units
Unit# linesMcCabe index# params
def _validate_shots_and_ir_results()
in src/braket/default_simulator/simulator.py
16 10 3
def _compute_eigenvalues()
in src/braket/default_simulator/observables.py
16 10 3
def _validate_ir_results_compatibility()
in src/braket/default_simulator/simulator.py
12 6 2
def _validate_ir_instructions_compatibility()
in src/braket/default_simulator/simulator.py
15 6 2
def __init__()
in src/braket/default_simulator/observables.py
9 6 2
def calculate()
in src/braket/default_simulator/result_types.py
12 5 2
def check_matrix_dimensions()
in src/braket/default_simulator/operation_helpers.py
8 4 3
def matrices()
in src/braket/default_simulator/noise_operations.py
10 4 1
def _validate_operation_qubits()
in src/braket/default_simulator/simulator.py
7 4 1
def __init__()
in src/braket/default_simulator/observables.py
14 4 3
def _actual_targets()
in src/braket/default_simulator/result_types.py
7 4 3
def apply_observables()
in src/braket/default_simulator/density_matrix_simulation.py
12 3 2
def multiply_matrix()
in src/braket/default_simulator/linalg_utils.py
11 3 4
def ir_matrix_to_ndarray()
in src/braket/default_simulator/operation_helpers.py
2 3 1
def check_cptp()
in src/braket/default_simulator/operation_helpers.py
4 3 1
def __init__()
in src/braket/default_simulator/noise_operations.py
7 3 3
def _validate_amplitude_states()
in src/braket/default_simulator/simulator.py
7 3 2
def _observable_hash()
in src/braket/default_simulator/simulator.py
9 3 1
def diagonalizing_gates()
in src/braket/default_simulator/observables.py
4 3 2
def diagonalizing_gates()
in src/braket/default_simulator/observables.py
4 3 2