in Java/core/src/main/java/com/amazon/randomcutforest/state/RandomCutForestMapper.java [211:271]
public RandomCutForest toModel(RandomCutForestState state, ExecutionContext executionContext, long seed) {
ExecutionContext ec;
if (executionContext != null) {
ec = executionContext;
} else {
checkNotNull(state.getExecutionContext(),
"The executor context in the state object is null, an executor context must be passed explicitly to toModel()");
ec = state.getExecutionContext();
}
RandomCutForest.Builder<?> builder = RandomCutForest.builder().numberOfTrees(state.getNumberOfTrees())
.dimensions(state.getDimensions()).timeDecay(state.getTimeDecay()).sampleSize(state.getSampleSize())
.centerOfMassEnabled(state.isCenterOfMassEnabled()).outputAfter(state.getOutputAfter())
.parallelExecutionEnabled(ec.isParallelExecutionEnabled()).threadPoolSize(ec.getThreadPoolSize())
.storeSequenceIndexesEnabled(state.isStoreSequenceIndexesEnabled()).shingleSize(state.getShingleSize())
.boundingBoxCacheFraction(state.getBoundingBoxCacheFraction()).compact(state.isCompact())
.internalShinglingEnabled(state.isInternalShinglingEnabled()).randomSeed(seed);
if (Precision.valueOf(state.getPrecision()) == Precision.FLOAT_32) {
return singlePrecisionForest(builder, state, null, null, null);
}
Random random = builder.getRandom();
PointStore pointStore = new PointStoreMapper().convertFromDouble(state.getPointStoreState());
ComponentList<Integer, float[]> components = new ComponentList<>();
PointStoreCoordinator<float[]> coordinator = new PointStoreCoordinator<>(pointStore);
coordinator.setTotalUpdates(state.getTotalUpdates());
CompactRandomCutTreeContext context = new CompactRandomCutTreeContext();
context.setPointStore(pointStore);
context.setMaxSize(state.getSampleSize());
checkArgument(state.isSaveSamplerStateEnabled(), " conversion cannot proceed without samplers");
List<CompactSamplerState> samplerStates = state.getCompactSamplerStates();
CompactSamplerMapper samplerMapper = new CompactSamplerMapper();
for (int i = 0; i < state.getNumberOfTrees(); i++) {
CompactSampler compactData = samplerMapper.toModel(samplerStates.get(i));
RandomCutTree tree = RandomCutTree.builder().capacity(state.getSampleSize()).pointStoreView(pointStore)
.storeSequenceIndexesEnabled(state.isStoreSequenceIndexesEnabled())
.outputAfter(state.getOutputAfter()).centerOfMassEnabled(state.isCenterOfMassEnabled())
.randomSeed(random.nextLong()).build();
CompactSampler sampler = CompactSampler.builder().capacity(state.getSampleSize())
.timeDecay(state.getTimeDecay()).randomSeed(random.nextLong()).build();
sampler.setMaxSequenceIndex(compactData.getMaxSequenceIndex());
sampler.setMostRecentTimeDecayUpdate(compactData.getMostRecentTimeDecayUpdate());
for (Weighted<Integer> sample : compactData.getWeightedSample()) {
Integer reference = sample.getValue();
Integer newReference = tree.addPoint(reference, sample.getSequenceIndex());
if (newReference.intValue() != reference.intValue()) {
pointStore.incrementRefCount(newReference);
pointStore.decrementRefCount(reference);
}
sampler.addPoint(newReference, sample.getWeight(), sample.getSequenceIndex());
}
components.add(new SamplerPlusTree<>(sampler, tree));
}
return new RandomCutForest(builder, coordinator, components, random);
}