def load()

in src/smexperiments/_environment.py [0:0]


    def load(cls, training_job_arn_env=TRAINING_JOB_ARN_ENV, processing_job_config_path=PROCESSING_JOB_CONFIG_PATH):
        """Loads source arn of current job from environment.

        Args:
            training_job_arn_env (str): The environment key for training job ARN.
            processing_job_config_path (str): The processing job config path.

        Returns:
            TrialComponentEnvironment: Job data loaded from the environment. None if config does not exist.
        """
        if training_job_arn_env in os.environ:
            environment_type = EnvironmentType.SageMakerTrainingJob
            source_arn = os.environ.get(training_job_arn_env)
            return TrialComponentEnvironment(environment_type, source_arn)
        elif os.path.exists(processing_job_config_path):
            environment_type = EnvironmentType.SageMakerProcessingJob
            source_arn = json.loads(open(processing_job_config_path).read())["ProcessingJobArn"]
            return TrialComponentEnvironment(environment_type, source_arn)
        else:
            return None