def get_pipeline()

in src/sagemaker_huggingface_inference_toolkit/transformers_utils.py [0:0]


def get_pipeline(task: str, device: int, model_dir: Path, **kwargs) -> Pipeline:
    """
    create pipeline class for a specific task based on local saved model
    """
    if task is None:
        raise EnvironmentError(
            "The task for this model is not set: Please set one: https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined"
        )

    hf_pipeline = pipeline(task=task, model=model_dir, tokenizer=model_dir, device=device, **kwargs)

    # wrapp specific pipeline to support better ux
    if task == "conversational":
        hf_pipeline = wrap_conversation_pipeline(hf_pipeline)

    return hf_pipeline