src/sagemaker_sklearn_extension/contrib/taei/models.py [209:219]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.input_dim = len(continuous_features) + len(categorical_features)
        self.embeddings = EmbeddingGenerator(self.input_dim, categorical_dims, categorical_features)
        self.post_embed_dim = self.embeddings.post_embed_dim
        hidden_dim = [self.post_embed_dim] + hidden_dim

        # Encoder
        self.encoder = [self.embeddings]
        for i in range(1, len(hidden_dim)):
            self.encoder.extend(
                (nn.Linear(hidden_dim[i - 1], hidden_dim[i]), GBN(hidden_dim[i]), nn.PReLU(hidden_dim[i]))
            )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/sagemaker_sklearn_extension/contrib/taei/models.py [327:337]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.input_dim = len(continuous_features) + len(categorical_features)
        self.embeddings = EmbeddingGenerator(self.input_dim, categorical_dims, categorical_features)
        self.post_embed_dim = self.embeddings.post_embed_dim
        hidden_dim = [self.post_embed_dim] + hidden_dim

        # Encoder
        self.encoder = [self.embeddings]
        for i in range(1, len(hidden_dim)):
            self.encoder.extend(
                (nn.Linear(hidden_dim[i - 1], hidden_dim[i]), GBN(hidden_dim[i]), nn.PReLU(hidden_dim[i]))
            )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



